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ABSTRACT

Multivariable control theory is used to design a controller for a

modified drooping stern turning submersible. The procedure used is

based on the LQG/LTR methodology. The controller is designed from a

linear model and tested for performance on a nonlinear system model.
Control variables are turning velocity, roll, and pitch. The resulting
controller successfully minimizes roll and pitch for a turning submer-
sible.
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CHAPTER 1

INTRODUCTION

1 . 1 Introduction

In the present age of high technology and sophisticated develop-

ment of vehicles, both air and submersible, designers continue to push

the performance limits of their designs, due to increased demands on

system requirements. Aircraft are required to perform faster, at higher

and lower altitudes. Submersibles , especially submarines, are being

designed to dive deeper and faster. It is this last category of ve-

hicles that this thesis addresses.

The operating envelope of a submarine is predicated on its design

depth and speed plus its ability to handle a mechanical casualty with

enough time to recover before exceeding test depth of the hull. Cur-

rently, submarines have the capability to operate at depths greater than

700 feet and speeds in excess of 30 knots.

The current hull design has been determined to be the most effi-

cient hydrodynamic design and has evolved from the Albacore. Addition-

ally, the rudder and sternplane cnfiguration has basically been un-

changed from the cruciform design for decades. The cruciform stern is

quite a sensible design in case of a casualty situation. When one wants

to climb or dive, all one has to do is either command rise or dive on

the sternplanes. To turn, a similar situation exists. One just needs

to turn the rudder in the desired direction one wants to go which also

causes the boat to dive. However, the cruciform stern arrangement has





its drawbacks. There is no differential control, i.e., both the upper

and lower rudders are mechanically tied together as are the right and

left sternplane control surfaces. A severe casualty such as a stern-

plane jam on dive does not allow for independent action on the stern-

plane control surface. The corrective action to combat this casualty is

to quickly reverse propulsion power direction and command full rise on

the sailplanes. All of this corrective action must be accomplished fast

enough, before the boat exceeds test depth. Finally, the cruciform

stern does not effectively allow the boat to maintain a level attitude

in a turn. The boat has a natural tendency to roll thereby causing the

rudder to contribute to pitch as if it were a stern surface.

In order to effectively correct the drawbacks of the cruciform

stern, an alternative stern configuration could be used employing dif-

ferential control of its surfaces, i.e., each surface independently

operated. The independent action would allow the operator to deflect

the control surfaces that effect depth in a casualty. Also, if a stern-

plane jam casualty occurred, then the plane that did not suffer the

casualty could be used to control the rate of depth excursion, while the

propulsion plant is used to slow the vehicle. Differential action of

the stern control surfaces can also be used to counteract the forces

that cause roll, thereby prohibiting undesirable depth changes of the

vehicle.

The stern configuration that will be considered in this thesis is

called a modified drooping stern (MDS) . The MDS consists of a single

rudder surface with two dihedral surfaces 37.5° below the horizontal.

In theory the MDS should be able to effectively control roll and enable

the operator to combat a sternplane casualty. However, the MDS presents

the operator with a coordination problem in that its movement is not so

straightforward; for example, for normal cruising, how should one de-

flect the dihedral surfaces to control the effects of roll? It there-

fore becomes of considerable importance to design an automatic control

system that handles such a vehicle in operation.





In this thesis a truly multivariable automatic controller will be

designed for the MDS configuration. Since there exists a number of

operating points within the submerged envelope, we have selected as a

nominal design point that which describes the situation of a two degree

deflection of the rudder and small deflections of the dihedrals, while

the boat is at a velocity of 21 knots.

A sketch of the proposed submersible is located in Figure 1 . The

overall length is 180 feet with a top speed of 21 knots. Mass proper-

ties are summarized in Appendix A. The convention for positive deflec-

tions of the control surfaces are shown in Figure 2, using the right

hand rule system. The rudder and dihedral surfaces will be referred to

as Dl, D2 , and D3 and will be limited to a maximum deflection of plus or

minus forty degrees.

The mathematical model used for the control design utilizes the

six degree-of-freedom nonlinear differential equations as developed by

Gertler and Hagen known as the NSRDC Model 2510 [1]. The linear hydro-

dynamic coefficients employed in the 2510 equations are derived in Chap-

ter 2. All nonlinear coefficients used are based on submersibles of

similar size and shape. Since this submersible has never been con-

structed on scale basis or tested in a tow tank, the accuracy of the

coefficients could not be verified. However, the computer model behaved

in a reasonable manner as one would expect with a full scale equivalent

model.

The origin of the submarine fixed axes is located at the center

of gravity. The positive directions of axes are: x-direction, forward;

y-direction to starboard; z-direction downward. The linear and angular

velocity components, forces and moments are shown in Figure 2 [6].

This thesis will develop and design a multivariable automatic

controller for the submarine model in Chapter 2. Chapter 2 consists of

the development of the linear hydrodynamic coefficients and explains the

modifications made to the six degree-of-freedom equations of motion.
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Figure 2. Sketch showing positive directions of axes,

angles, velocities, forces, and moments.
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Additionally, an explanation is provided as to how the equations of

motion were linearized. Chapter 3 consists of the controller (compen-

sator) design. It includes a brief explanation of the control varia-

bles, system augmentation, and calculation of the control gain matrix,

G_, and the filter gain matrix, H, which result from the frequency domain

loop shaping methodology employed for the design. The design method-

ology itself is also discussed briefly. Chapter 4 summarizes the re-

sults of the nonlinear controller simulations. Finally, Chapter 5 lists

the conclusions and recommendations as drawn from the resultant sub-

marine model and controller design.

1.2 Contributions of Thesis

The contributions of this thesis is twofold: (i) evaluation of

the MDS configuration for a submersible in a high speed turn,

(ii) design of an automatic control system to facilitate the MDS opera-

tion using. Linear Quadratic Gaussian/Loop Transfer Recovery (LQG/LTR)

methods

.

The emphasis is on the frequency-domain properties of the state-

space based LQG designs. Simple and efficient tools for loop shaping

are employed that lead to satisfactory designs. These tools accomplish

singular value "pinching" in the high and low frequency ranges, so as to

satisfy stability and performance requirements.

Moreover, this thesis tests the controller designed on the basis

of a linear model on the nonlinear process model which is a better

approximation to the actual system.

13





CHAPTER 2

THE SUBMARINE MODEL

2. 1 Nonlinear Equations of Motion

The equations of motion describing the design vehicle in this

thesis as already mentioned, were the six degree-of-freedom equations

contained in the NSRDC document 2510 [1]. The coefficients of the equa-

tions, as developed in Section 2.3, describe the vehicle's geometry.

Modification was made to the equations to account for the geometry of

the MDS configuration. The terms that involved both rudder and stern-

plane action were combined; these can be seen in the lateral force,

pitching moment and yawing moment equations. The factors that premul-

tiply the corresponding surface deflections were based upon the geometry

depicted in Figure 3.

Dl is primarily used for rudder control while control surfaces D2

and D3 are used for depth and roll control. However, D2 and D3 can also

act as an additional rudder and their potential contribution can be seen

from the lateral force equation where the multiplying coefficient is

given by sin 37.5° = 0.6088. The resulting term looks like the follow-

ing, Dl - 0.6088D2 + 0.6088D3. Additionally, this term takes into ac-

count the sign of the hydrodynamic coefficients Y„ and Y . In this

case both Y. and Y~ are positive and employ the sign convention as

established in Figure 2. Likewise, the stern contribution terms in the

pitching and yawing moment equations have similar form.

14





For depth control, surfaces D2 and D3 are used. The factor

cos 37.5° = 0.7934 appears. Depending on the sign of the hydrodynamic

coefficients Z x , Z s , K , M. , N_, and N- , the sign of the deflecting

term is assigned.

One must keep in mind that, not all hydrodynamic coefficients

involving a control surface have a value that can be predicted or meas-

ured in model tests. If a value could be determined, then one would

assign the additive or subtractive nature to the contribution of the

control surface based upon the sign of the corresponding hydrodynamic

coefficient. The resulting nonlinear and auxiliary force equations are

given in Appendix B

.

2. 2 Linearized Equations of Motion

Control design requires that the nonlinear equations of motion be

linearized about a nominal operating point. The nonlinear equations are

of the form

Ex = f(x, u) (2.1)

from which one can derive the linearized equations in the form

EAx = AAx + BAu (2.2)

which represents a Taylor Series expansion of the nonlinear equations

about a nominal point x and u , by retaining only the first order
r —o —o J

terms. More specifically, expanding Equation (2.1) in a first order

Taylor Series around a nominal point, one gets

3f(x , u ) 3f (x » ")— —o —

o

, N o —

o

. .

Ex + EAx = f (x , u ) + (x - x ) + r- (u - u )—o — —o —o 9x — -

o

du — o

(2.3)

15





If one lets Ax = (x - x ) and Au = (u - u ) where x is the nominal— — —o — — —o —

o

state vector and u the nominal input which, furthermore, are known to

satisfy the original nonlinear equations, then one is left with

3f(x , u ) 3f(x , u )

EAx = ~~^^
Ax + --?^

Au (2.4)
3x — 9 u. —

3f_(2£ > u ) 3f (x , u )

where A = and B = . The linearized equations are— dx — 3_u

listed in Appendix C.

Additionally, the full nonlinear equations include crossflow and

vortex shedding terms. For the purpose of this thesis, the crossflow

term was linearized while the vortex shedding term was omitted. The

reason for this was to be able to compare the results of this submer-

sible to a full scale model, whose linearized equations did not include

vortex shedding, either.

2 . 3 Hydrodynamic Coefficients

The hydrodynamic coefficients that comprise the linear and non-

linear equations of motion are very important in the mathematical model.

The linear coefficients can be estimated using equations based on the

geometry of the submersible. The nonlinear coefficients are normally

the result of model tests either in a tow tank or wind tunnel. The

coefficients not calculated in this thesis are taken from past designs

of similar size and shape vehicles.

2.3.1 Body Coefficients [2]

We assume a prolate ellipsoid for the hull shape, where the major

and minor axes are given by

16





a = 90 ft b = 10 ft

V = — irab

V = 37,699 ft
3

The buoyant force of the ellipsoid is

B = pV

B = 2.4283 x io
6

lbf.

The surface area of the ellipsoid is given by

_ 2 . ab . -1
S = 2frb + 2tt — sxn e

e

where

. . c
e = eccentricity = —

c = (a - b )

e = 0.9938

S = 8932.4 ft
2

From Lamb [3] with r- = 9, the factors

17





K' = 0.8645

K
l

= 0.0241

K
2

= 0.9538

can be obtained. The moments of inertia for the body are as follows:

I =1 for a prolate ellipsoid
yy zz r v

g 2.4283 x 1Q
6

ib fm - j- = j- = 75483 slugs
32.17 ±± 32.17 ^|

s s

I =
m(a\+b2) = 1.2379 x io

8
slugs-ft

2

yy 5
6

I = 1.2379 x 10
8

slugs-ft
2

zz &

1 m m(2b
2

)

xx 5

I = 3.0193 x io
6

slugs-ft
2

XX °

The mass and moments of inertia can be nondimensionalized by

dividing with the appropriate factor.





I _

(4)

mW
Therefore

I
1 -I 1 = 0.000654
yy zz

I' = 0.000016
xx

m' = 0.1293

The center of gravity is assumed to be located in the port-

starboard plane of symmetry, 12 inches below the centerline.

x
G

=

Y
G

-

z
G

- 1 ft

Nondimensionalizing

,

z
g " T " °- 00556

From Newman [4], the Reynolds number for a body in 10°C seawater at

21 KTS, is given by

19





R = Hi
e y

(21) (1.689) (180)

1.35 x 10
6
(3.281)

2

= 4.3931 x io
8

Assuming that the frictional drag coefficient is equal to the drag coef-

ficient and using the ITTC frictional resistance line gives

O. = c °'
075

(log
10

R - 2)

C
D

= C
F

= 0.0017

for the coefficient of drag.

The body hydrodynamic coefficients can now be calculated [5]

C S

Y' = -0.234(m')
0,79

- -y- = -0.008009 (2.5)

Y' = -(0.10 - Kjm' = 0.000981 (2.6)
r 1

Z » = Y ' = -0.008009 (2.7)
w v

Z ' = _y' = 0.000981 (2.8)
q r

M' = 0.87(Ko
- K.)m' = 0.010458 (2.9)

w 2 1

M' = 0.045(m') = 0.000582 (2.10)
q

20





N 1 = -M' = -0.010458 (2.11)

N
r

= M
a

= -°- 000582 (2.12)

xy = -K
1
m» = -0.000312 (2.13)

Y^ f = -K
2
m* = -0.012333 (2.14)

Y-'Z
Y-' =

V
n

g = -0.000069 (2.15)
p I

K-' = Y-' = -0.000069 (2.16)
v p

Z-' = Y-' = -0.012333 (2.17)
w v

M-' = -K'l' = -0.000565 (2.18)
q y

N-' = M-' = -0.000565 (2.19)
r q

2.3.2 Fin Coefficients [6]

The MDS stern configuration introduces asymmetry about the cen-

terline of the vertical plane. Several views have been depicted to

allow calculation of areas, aspect ratios and planes of motion. Fig-

ures 3 and 4 depict fin dimensions.

For a single fin:

A = Projected area

= 100.4 ft
2

21





-r D1

4.5 ft

H H 1

14 ft

PROJECTED AREA = 100.4 ft
2

RUDDER

14ft PROJECTED AREA = 100.4 ft
2

DIHEDRAL

Figure 3. Rear view, rudder, and dihedral fin dimensions
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14ft

8.5 ft

I

3.6 ft

2.2 ft

"
6.5 ft /

SCALE: 1/8 in. = 1 ft

PROJECTED AREA = 194 ft
2

PROJECTED AREA OF LOWER
PLUME PROJECTION = 28.8 ft

2

4.5 ft VERTICAL

4.5 ft

J I

i\
I

4^1

11. 1 ft
oo|

1

1 6.5 ft

<

1

I 1
1

1-. __ —

11. 1 ft

1

1

1

'

I

\y

PROJECTED AREA = 186.4 ft2

PROJECTED AREA OF
MOVEABLE PORTION = 68.9 ft 2

2.2 ft

2.2 ft

HORIZONTAL

Figure 4. Vertical and horizontal plane projections,
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A = Projected area of movable portion

= 80.6 ft
2

3
AR,. = aspect ratio of fin = —

c

7 = 28 ft c" = 8.25 ft

AR
f

= 3.394

AR = aspect ratio of the movable portion

= 6.222

For the horizontal plane projection contributions, one has:

A^ = projected area of the horizontal plane

= 186.4 ft
2

AR^ = aspect ratio in the horizontal plane

= 2.69

The following definitions are used in calculating A and C

2tt
C
La

1 +- 2-
AR

In the vertical plane

AR = 3.394

A
f

= 100.4 ft
2

CT
= 3.953

La

24





x - distance from center of buoyancy to center of pressure
of the stern

The center of pressure is assumed to be 1/2 the mean chord length

forward of the hailing edge. For this vehicle

x = -94.5 ft
cp

"C
La

(A
f

)

Y' = = = -0.012249 (2.20)
%

Y'X„„v CV
N» =

,
= 0.006431 (2.21)

The contribution to roll due to asymmetry is

Y'Z
K f

v

where Z was calculated by summing the different components of the

vertical projection times their moment arm and then divided by the total

area.

For this vehicle a value for Z was found as
cp

Z = 10.9 ft
cp

Therefore

K' = -0.000742 (2.22)
v

25





For the horizontal plane projection

a = 2.64

A = 186.4 ft
2

C T
= 3.604

La

whereby

-C A
z

t = —i^_ = -0.020733 (2.23)
w „2

-Z'x
M - =

w CP = -0.010885 (2.24)
w a

z t = M * = -0.008673 (2.25)
q w

Y' = N* - 0.006276 (2.26)
r v

—K ' x

K . =
v CP = -0.000380 (2.27)

r I

-Z'x
M , = q CP = -0.004553 (2.28)
q I

Y'x
N' =
r

-
r-^E- = -0.003295 (2.29)

In order to calculate K 1

, the method will be applied to an indiv-
P

idual fin.

26





A = 100.4 ft
2

CT = 3.953
La

~C
La

A
Y" = , = -0.012249

I
2

then

v (%

)

:,'Z' \2

K 1 = Y'
P

Z 1 is the distance from centerline to center of pressure of the
cp r

individual fin. For this fin Z f = 7.44 ft
cp

K* = -0.000021
P

The K' for the design vehicle will be three times the above value.
P

K' = -0.000063 (2.30)
P

Abkowitz [7] provides a means for calculating the acceleration

derivatives. In the horizontal plane

' 0.54
Z- "

2 2
TTPS C

w .12 2
4n/s + c (-!

where s is the span and c is the chord.

s = 11.1 ft + 11.1 ft = 22.2 ft c = 8.25 ft

27





z«

Z*' = .

W - = 0.000331 (2.31)
w 1 .3

2 P^

In the vertical plane,

where

Hence,

' 0.54

2 2 \ (1 + - + -
,

TTpS C \ \ C S^

v r^ r 1 „3Jl 2 -i-
PrNs + c 2

s = 14 ft + 8.5 ft = 22.5 ft c = 8.25 ft

Y-' = -0.000336 (2.32)
v

Z* 'x

M .» =
w

„

CP = -0.000174 (2.33)
w x,

-Y* 'x

N .i = v CP = -0.000176 (2.34)
v I

z .' = _M .
• = 0.000174 (2.35)

q w

x \2

M- '

q
-Z-'
w

-o.ooouy

r
= Y-'

V (^)
= -0.000093

(2.36)

(2.37)

Y-'z
K ., =

v CP = -0.000020 (2.38)
v I
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Y-' = N-' = 0.000176 (2.39)
r v

Contributions due to the deflections of the fins result in the

following coef ficientSj for which it suffices to calculate those for one

fin only.

Y . -
C
LcAl

5 .2

a " AR
MP

= 3 ' 394

where C = 3.6 and A^ = 68.9 ft .

C T = 3.95
La

Ajj = 46.8 ft
2

Yl = 0.005706
o

C A,

Z» = -^L = -0.007656 (2.40)

2

Y 1 Z' '

i „
5 CP = 0.000269 (2.41)K

6

where Z'' is the distance for the moveable portion, -8.46 ft.
cp

-Z'x
M . =

6 CP = -004019 (2.42)
6 I
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CT K, x
„ La M ' cp
6

£
2 I

where A^ = 28.8 ft
2

N x = -0.001680 (2.43)
o

When the fins are deflected, drag forces are induced. The drag

force of a body is given by

x = -r C
D
pAu

From Comstock [8]

C = C +
D DO irae

where

a = AI^ = 1.182

e = 0.9 (Oswald efficiency factor)

Since

\ d6 /
C = -T^] 6 = 1.656

then

C
D

- C
DO

+ 0.8U6«
2
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Substituting this into the X equation,

2\ 2
^CDQ+ 0.8146

<" — '

"Z

')pAMu^

and, taking the second derivative with respect to 6 , one gets

x
56

= o.suep^u2

Next, nondimensionalizing,

X' = -.—£\r- = -0.004053 (2.44)
00

W-)

2.3.3 Sail Coefficients

Figure 5 shows the dimensions of sail used. Using the method

>ed in Ri

the following.

described in Reference 8, to evaluate C T for the sail one calculates
La

A = radian for sail

„ = a . iim°i - 1.25
s 16

A = 160 ft
2

C
T

= —^V = 2.42
La

1 +-£-
AR
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SCALE: 1/4 in. - 1 ft

10 ft

16ft

8 ft

h«- 58 ft VW-^F.P.

su R FACE AREA = 2ttYi/2 (a
2 + b

2
) -h

A
s

= 397.4 ft2

Figure 5. Sail geometry.
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T a
Y^ = — = -0.011934 (2.45)

The center of pressure is assumed to be located at the 1/4 chord length

from the forward edge.

x = 28 ft
cp

-Y'x
N t = —Y_£R = 0.001856 (2.46)

The contribution to roll is

Y'z

K'
v

where z is the distance from the centerline of the vehicle to the
cp

vertical center of pressure, and z = z' = -15 ft for this submersible.
cp cp

Then,

K^ = 0.000155 (2.47)

Y' - N' = 0.001856 (2.48)
r v

Y'x
N' =

r
„

cp
- 0.000289 (2.49)

FWY' \-^-)
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The acceleration derivatives, according to Abkowitz can be de-

rived analogously as for the stern control surfaces. In this case, the

span will be twice the height of the sail and the resulting derivative

will be divided in half and then nondimensionalized. In the vertical

plane one gets

'. 0.54

Y .' =
2 2 \ (1 + - + -

TTP S C \ \ C S
,

V r^ 7T 1 „3rr 2 ± P rVs + c 2

Y-' = -0.000886 (2.51)
v

where

s = 20 ft

c = 16 ft

Hence

-Y« 'x

N .t =
v CP = 0.000138 (2.52)

v a

Y- 'z

K .. =
v CP = 0.000074 (2.53)

v I

N .i ~ Y -' \-£2-) = -0.000021 (2.54)
r v \ £ /

Y-' = N-' = -0.000138 (2.55)
r v

K .i = Y .« (_c£) „ -0.000006 (2.56)
p v \ I }
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2.3.4 Sailplane Coefficients

Figure 6 shows the geometry of the sailplane. The center of

pressure is assumed to be 1/2 mean chord length forward of the trailing

edge. For this vehicle,

x = 24 ft
cp

The following definitions are used in calculating A and C

b = tip of fin to hull centerline

= 11 ft

d = maximum diameter of hull

= 20 ft

a = aspect ratio = 2.67 for a single plane

A = 31.5 ft
2

C T
= 3.59

La

-C A
z » =

La
= -0.003490 (2.57)w

I
1

-Z'x
m t = w CP = 0.000465 (2.58)W A/

There is no contribution to roll in the horizontal plane.
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7ft'

7 ft

K2ft-H

8ft

SCALE: 1/4 in. = 1 ft

PROJECTED AREA OF
SINGLE FIN = 31.5 ft 2

Figure 6. Sailplane geometry.
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-Z'x
z , m w CP = 0.000465 (2.59)

I

Z'x
M i = q cp m 0.000097 (2.60)
q I

The contributions due to the deflection of the fins are calcu-

lated in a similar fashion as before.

C A
zlu = -^T- = "0.005429 (2.61)
ob „2

where z 1 ' for the sailplane is 16 ft
cp

Z
cS

I

x
I

Ml = n°
? = 0.000724 (2.62)

x,

As with the stern control surfaces, when the fins are deflected:

drag forces are induced.

a = AR = - = 1.2727
msp —

e = 0.9 (Oswald efficiency factor)

Since

e>C
L

= = 3.206
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then

D DO -rrae

C
D + 0.45016 2

Substituting this into the expression for the drag force of a

body x = y CLpAu gives

(cnn + 0.45016
2W u

2

_ \ DO / msp

Taking the second derivative with respect to 6,

Xxx = 0.4501pA u
66 msp

Nondimensionalizing.

x
5 5

= 7—fV\m
The acceleration derivatives for the sailplanes are calculated as

follows, with c = 5.25 ft and s = 14 ft. In the horizontal plane,

0.54

2 2 i
, ! + _il_ + A^5

tt P (14)
Z
(5.5)

Z
\ V _ 5.25 _ 14

w 1 3

4V(14)
2
+ (5.5)

2
2

P ^
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Z^' = 0.000092 (2.64)

M
w'

= \ °P = 0-000012 (2.65)

Zq'
= M

w'
= O- 000012 (2.66)

M-' a Z-' (-f2.) = -0.000002
q w \ I I

(2.67)

The hydrodynamic data to be utilized by the SUBRUN computer program,

that will generate the linear dynamics, requires that the coefficients

be input in a dimensionalized form rather than a nondimensionalized

form. Appendix D contains a listing of dimensionalized hydrodynamic

data and dimensionalizing factors for this purpose.

2. 4 Computer Program Description

The computer program, SUBMODEL, used for this thesis was devel-

oped at Draper Laboratory [9]. The program has the capability to inte-

grate the nonlinear equations of motion of a submarine; search for a

local equilibrium point in the nonlinear equations of motion; calculate

the linearized dynamics of the linearized equations about a nominal

point; integrate the linearized equations of motion; simulate the com-

pensated vehicle using either the nonlinear or linear equations.

As previously stated, the nonlinear equations take the form of

Equation (2.1)

Ex = f (x, u)
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where

x = 10 x 1 state vector with states u, v, w, p, q, r, phi,

theta, psi and z, the last four describing the vehicle

attitude with respect to an inertial reference frame.

_u = 4 x 1 control vector with DB, Dl, D2, D3 as members

f_ = 10 x 1 vector that is a nonlinear function of the states

and the controls

E = 10 x 10 matrix

The nonlinear equations were integrated with the RPS propulsion

model, as described in Appendix E, using as input a velocity in feet/

second (corresponding to 21 knots) with initial values of zero for all

states, with the exception of Dl deflected to 2 degrees, D2 deflected to

0.5 degree and D3 deflected to -0.4744 degrees. The assumption is made

in the propulsion data that wake and thrust deduction factors vary

slightly and are therefore considered constant. The nominal point is

then determined by integrating the nonlinear equations with the eta

propulsion model using as inputs for the states, the final value of the

states from the RPS integration.

Once the nominal point has been determined, the linearized dynam-

ics can be calculated by linearizing about that nominal point (see Ap-

pendix E for a description of Nominal Point) . Recall that the linear-

ized equations are of the form

EAx = A'Ax+B'Au (2.68)

or, equivalently, the conventional representation form

x = E Vx + E
L
B'u = Ax + Bu (2.69)
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On can easily see that A in state space form equates to IS A' and B_

equates to E B_' . It is E_ A' and E_ B_' that define the linear system

dynamics, on which the control design is based.

To validate the resulting linear model, one perturbs the states

of the nominal point and compares the resulting responses of the per-

turbed linear and nonlinear models. Perturbation from the nominal point

on the order of 10% is adequate for checking validity of the linear

model behavior in comparison to the nonlinear model. Figure 7 shows the

graphical responses of the two models for comparison.

Once the controller has been designed,, the effectiveness of its

operation can be tested by using it on the previously derived linear and

nonlinear models and analyzing their responses to step and ramp inputs.

A description of the controller development is given in Chapter 3 with

the results of the subsequent testing in Chapter 4.
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Figure 7. Linear and nonlinear submarine model responses,
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NON-LINEAR RESPONSE
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Figure 7. (Cont.)
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LINEAR RESPONSE (CONT'D)
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Figure 7. (Cont.)
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NON-LINEAR RESPONSE (CONT'D)
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Figure 7. (Cont.)
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CHAPTER 3

COMPENSATOR DESIGN

3.1 Overview of the LQG/LTR Procedure [10]

In this chapter, a controller will be designed using the LQG/LTR

design procedure. The singular value loop shaping approach will be used

to mold the singular values of the system open-loop transfer function to

meet the specifications of performance and robustness to plant uncer-

tainty and modeling errors. In order to meet the performance specifi-

cations of small steady state errors, one desires high DC gains. To

minimize the effect of wave encounter and modeling errors at high fre-

quancies, we desire crossover at about 0.1 radians per second with a

large roll-off after crossover. This will ensure attenuation of high

frequency modeling errors and sensor noise, as well as wave effects

which typically occur in the 0.2 to 2 radian range.

The LQG procedure is a mathematical method of designing a robust

multivariable controller for a state space system. The designer, how-

ever, has the flexibility to pick the parameters of the design motivated

from a frequency domain setting. An iterative design process is then

carried out, during which the designer is able to match desired fre-

quency domain characteristics, captured by the singular values of the

multivariable system, which are equivalent to the SISO Bode plots, by

using time-domain mathematics as derived for the solution of the origi-

nal optimal control problem. In this way, a systematic procedure can be

carried out, with the mathematical solution kept simple and in closed

form for even a complex MIMO design.
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The design is based on the feedback loop as represented in Fig-

ure 8. The plant G(s) has an input u, and output y_, a disturbance d. as

seen at the output, and measurement noise vector n. The compensator is

designated as K(s)

.

r +o— k - » g(s) —iSy

Figure 8. Generalized feedback loop.

The plant G is the physical system to be controlled and can

therefore behave in a complex manner, as implied by the term nonlinear,

infinite dimensional and time-varying which are used for its modeling.

To simplify the situation, we desire G to be linear, finite and time-

invariant (as results from the linearization procedure described in the

preceding chapter), with a transfer function G(s)

.

The design objective will be to provide good command-following,

good disturbance rejection, and small responses to sensor noise, all

subject to the constraints imposed by modeling errors. Hence we need

large loop gains in the frequency ranges where commands and disturbances

are large and small loop gains in the frequency ranges where modeling

errors are large, as well as a well-behaved crossover. These frequency

domain requirements can be captured as shown in Figure 9, where the

maximum and minimum singular values of the loop transfer matrix envelope

the MIMO system performance, and can be directly interpreted as SISO

Bode plots. For a good design, it becomes necessary to use techniques

which directly take plant descriptions and performance specifications
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PERFORMANCE
CONSIDERATIONS LOGw

STABILITY
ROBUSTNESS
CONSIDERATIONS

max

mm

Figure 9. Frequency domain requirements.

into consideration and systematically produce a controller which satis-

fies the singular value requirements of Figure 9. The multivariable

design technique, LQG with Loop Transfer Recovery, is able to perform

such a direct singular value loop-shaping.

As previously stated, the LQG/LTR methodology was developed to

perform control system design on the basis of time-domain optimization.

The method uses the following state space description of the plant , G:

= Ax + Bu + ? (3.1)

y = Cx + n (3.2)

where x is an n-dimensional state vector, _u and y are m-dimensional

control inputs and outputs, and £ and r\_ are white noise processes. The

A, B_, and C_ matrices satisfy

G(s) = C<Ks)B (3.3)
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where £(s) = (SI - A) . The feedback design task is to find a control

law u(t) that satisfies the specifications. For this purpose, the math-

ematics developed for the solution of the following optimization problem

are employed, although the design is geared towards loop-shaping and

clearly cannot claim optimality as will be seen in the sequel.

T
T T

Min J = j [x (t)Qx(t) + u (t)Ru(t)] dt (3.4)

where the R matrix is the control weighting matrix and Q is the state

weighting matrix. The solution of this optimization problem is given by

u(t) = -Gx(t) (3.5)

where G is a full-state linear quadratic regulator (LQR) gain as defined

in the Control Algebraic Riccati equation (CARE). However, in the LQG/

LTR procedure, the solution is carried out in two stages. First, the

filter gain matrix, H, is found by solving the Filter Algebraic Riccati

equation (FARE)

.

The objective in this first step is to shape the singular values

of the Kalman filter (filter gain) matrix according to the specifica-

tions, as suggested in Figure 9, and then recovering the same loop

transfer matrix shape for the singular values of the overall system loop

transfer matrix T_(s) , which includes the plant, any augmentation, and

the controller gain matrix G_, which is obtained as a second stage solu-

tion, by solving the CARE, for a given filter design. This compensator

structure is referred to as a Model Based Compensator (MBC), because it

makes explicit use of the plant linear model (i.e. A, _B, C_ matrices).

At the end of the second stage, the overall system matrix is obtained as

T(s) = Gp(s)K(s) (3.6)
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where K(s) = G(SI - A + BG + HC)~ H. Once the shape meets the design

specifications, we are further guaranteed that the poles of [A - HC] and

[A - BG] will lie in the left half plane, i.e., no instabilities will be

introduced into the nominal system, provided [A, Bj are stabilizable and

[A, C] detectable.

3.2 Modal Analysis

Since this thesis emphasizes primarily the influence of the MDS

configuration, the decision was made not to address the effect of the

sailplanes. Additionally, the states psi and z are of no direct inter-

est because of their non-effect on the other (body) states. The origi-

nal plant A matrix contained zeroes in the columns designated for psi

and z. By ignoring psi and z, this reduces the plant matrix to an

(8 x 8) matrix, the control matrix to an (8x3), and the output matrix

to a (3 x 8) . It then becomes necessary to determine which states to

use for the purposes of control.

The MDS arrangement has the unique potential to control roll, $ ,

(and pitch, 8) via D2 and D3. Finally, for the third variable, turning

velocity, r, (yaw rate), could be controlled with Dl.

At the outset, the corresponding poles and zeroes of the plant

were determined. The variable combination <J>, 8, and r provided no non-

minimum phase zeroes and no unstable poles. Table 1 lists both poles

and zeroes for the open-loop plant

.

A modal analysis was then conducted to ascertain the relative

controllability and observability of the system. To examine the con-

trollability of a system, one is interested in the ability of (a) parti-

cular input (s), in this case, Dl, D2 and/or D3, to control the (entire)

state of a system. The observability of a system tests the possibility

of observing the complete state of the system through a particular out-

put, i.e., r, <j> or 8. Using the augmented system A, B_ and C_ matrices
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Table 1.

Augmented Plant Poles

-2.029353579E-02

-4.377357711E-02

-1. 8039105 15E-01

-1.843174783E-01

-6.227811352E-01

-6.583723063E-01

-5.085034079E-01 ± 5.224757797E-01

0.000 (Multiple of 3)

-1.000E-01 (Multiple of 3)

Augmented Plant Zeroes

-4.421289192E-02

-1. 98463495 1E-01

-2.583928560E-01

(augmentation to be described in Section 3.3), the corresponding eigen-

values and eigenvectors were calculated and a modal analysis performed

in order to study the controllability and observability properties of

the system. The eigenvalues give the response time of a system's modes

while the eigenvectors represent the relative contributions of each

state to a particular mode, represented by the corresponding (normal-

ized) eigenvector. For example, the plant can be described in state

space from by,

x = Ax + Bu (3.7)

y_
= Cx (3.8)
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If we let x = Tz_, for any nonsingular T, we can define a new system.

However, one must remember that _z does not describe the physical state

space. T can be chosen to be the matrix of eigenvectors. Using this

change of variable transformation, one gets that k = Tz. So if one

makes this change of variable substitution into the state space equa-

tions (3.7) and (3.8), one is left with

x = Tz_ = ATz + Bu (3.9)

Z = CTz (3.10)

To complete the transformation, T is multiplied through (3.9) and

(3. 10) thus yielding

z = T
1

ATz + T *Bu (3.11)

The net effect of the above procedure is the diagonalization of the

state equation where the elements on the diagonal correspond to the

eigenvalues of the system, if they are distinct. Rewriting the modal-

domain state and output equations for MIMO system, one gets

z = Az + B u (3.12)

v_ = C z (3.13)

* -I *
where B_ = T B, C = CJ_, and A is a diagonal matrix of eigenvalues.

For a system to be controllable by an input _u or observable by output y_,

the column matrix ^ or the row matrix C_ must not contain zeroes in a

SISO setting. In a MIMO setting, if zeroes appear, then there must be

at least one nonzero entry in the _B matrix and one nonzero entry in the
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C matrix for a particular state to be controllable and observable by at

least one corresponding input or output.

Another method could be used to determine the degree of control-

lability and observability for a MIMO system and that is the rank meth-

od. If one forms the matrices

[B, AB, A
2
B, ..., A

n L
B]

and

C

CA

CA^

CA
n-1

and their rank is equal to the order of the system, then the system is

both controllable and observable. If the rank is less than the order of

the system, then that difference is the number of uncontrollable and

unobservable states [11]. Appendix F contains the eigenvalues (exclud-

ing augmentation) and the corresponding eigenvector matrix, TEMP. The

matrix A_ is the diagonalized modal domain matrix with the eigenvalues

located along the main diagonal. The new B_ and C_ matrices are also

included and one can observe that no zeroes exist in either matrix.

Thus one can conclude that control inputs Dl, D2 , and D3 can each con-

trol all the states of the plant while the entire state vector can be

observed by any of the r, <}> , and 9 outputs.
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3.3 System Augmentation

Before setting off to design a compensator for the control sys-

tem, one must examine the behavior of the plant singular values. Fig-

ure 11 shows the open loop singular values with the system augmented

with an integrator for each input. In order to further improve the

model, one must take into account the actuator dynamics. Actuators are

normally modeled as second order systems, however, when one takes into

account the high damping in a real actuator, one can then approximate

the dynamics of the actuator as a first order system. Pictorially this

situation looks like Figure 10.

The state-space equations for this open loop representation are:

(3.14)X
-p

A x
-p-p

+ B u-p-p

X
P

= C x
-p-p

X
—a

= A x
—a—

a

+ B u
—a—

a

*a
= C x

—a—

a

(3.15)

(3.16)

(3.17)

x
x

= A^ + BjUj (3.18)

ZX
= £A (3.19)
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Combining the above and putting into matrix form, one gets

x =

x
-P

^1

A B C—p—

a

X
-p

u

A—

a

*A X
—a

+ u
—a

k *E *I ±1

2p % 0]

rx "i

-p

X

*I

The modeling of each actuator to a first order approximation will

be of the form

is + 1
s + -

T

a

u
(3.20)

Therefore

a u.

Sx + — - —ax x
(3.21)

In state space form, this will be represented as

x
a u

x = r —
a t t

(3.22)
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For a system with three control surfaces, in matrix form, we get

1 "l

T T

A
1

B 1_

—a T —a X

1

T

_1

T

c—a

1

1

1

The addition of three integrators is needed to provide high

enough gains at low frequencies for good command following and disturb-

ance rejection.

(3.23)

Thus for each control variable x s = u or x = u. Then for a system

with three control inputs, the associated matrices will look like

h

0"

p 0.

2.1

'1 0"

1

.0 1.

£i

"1 0"

1

p 1_
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The augmented system in state-space form is consequently given by

x =

^p(8 x 8)

(8

-p-a
x 3) (3 x 3)

(8 X 3)

_ 1_

T

1

T

(3 x 8)

1_

X

1

T

I

T

1_

T

(3 x 3 ) (3 x 3 )

X +

(8 x 3 )

(3 x 3 )

1

1

1

(3.24)

£ -

"0
1

1

1
(3 x 3) (3 x 3 )

Note that the c_ matrix was not included in the output matrix because

the desired outputs are r,
<f>

, and 8.

The time constant, T, is defined as —- [12]. Recall that the
w t,

n

projected crossover frequency is about 0.1 radian per second so as to

avoid the natural frequency of ocean waves of 0.14 radians per second.

A typical value for the natural frequency and damping ratio for an actu-

ator is 3.14 radians per second and £ = 0.9. The resultant time con-

stant for the actuator then becomes 0.354 sec. This is clearly above

the desired bandwidth. It was consequently decided to ignore the actu-

ators and instead use lag compensation at 0.1 radians per second to

improve roll-off near crossover. This will have the effect of making

the vehicle less susceptible to modeling errors and high frequency

noise. Therefore, the system is augmented with three lag compensators

whose dynamics are as shown in Figure 12.
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Figure 10. Augmentation representation.
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Figure 11. Singular values of open loop plant.

Figure 12. First order lag compensator.





3.4 Controller Design

The method employed to design the controller uses the Model-Based

Compensator approach [13]. Two very important points must be kept in

mind. First, the controller must be able to maintain the stability of

the closed loop system and, secondly, be able to achieve desirable sin-

gular value loop shapes, in the frequency domain which translate to

performance specifications. This can be achieved by appropriately shap-

ing the system singular values in a manner analogous to the single in-

put-single output Bode plot shaping. Pictorially, the controller and

system look like Figure 13. Figure 14 illustrates the state-space de-

scription of the Model-Based Compensator, K(s) , and the open-loop plant,

G (s). It should be noted that the A, B, and C_ matrices that appear in
-P

~~

the plant also appear in K(s) in a similar fashion and thus the term

"model-based."

d(s)

Ms) +/^>. £(s)e(s) I I U(s) JL T—
}__^ K(s) ^_^/J ». G

p
(s)

Y(s)

Figure 13. Feedback structure of a MIMO control system.

The dynamics of the open loop plant can be written as

x(t) = Ax(t) + Bu(t) + Ld(t) (3.25)

y_(t) = Cx(t) (3.26)

The open-loop transfer matrix is then

Gp(s) = C(SI - A)
X
B
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so that

£(s) = Gp(s)u(s) (3.28)

The Model Based Compensator dynamics utilizes the state vector z(t)

which has the same dimension as the plant state x(t) . The dynamics of

the MBC can be written as

_z(t) = Az(t) + Bu(t) + Hv(t) (3.29)

y_(t) = -e(t) - Cz(t) = y_(t) - Cz(t) - r(t) (3.30)

u(t) = -Gz(t) (3.31)

In the above, the augmented dynamics of the plant as described by

Eq . (3.24) are used. Combining the above three expressions we get

_z(t) = [A - BG - HC]z_(t) - He(t) (3.32)

Thus the input to the controller is the error, e(t) and the output is

_u(t) . The input-to-output relation can be written as

u(s) = K(s)e(s) (3.33)

where K(s) = G(sl_ - A + BG + HC ) H. If one uses an appropriate change

of variable, one can determine the stabilizing nature of the gain ma-

trices G_ and H. The appropriate variable change is

w(t) = x(t) - z(t) (3.34)

It follows that w(t) = x(t) - _z(t). After making the appropriate sub-

stitution for x(t) and z(t), one is left with
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w(t) - [A - HC]w(t) + Ld(t) - Hr(t) (3.35)

This resulted in the decoupling of the dynamics of w(t) from that of

x(t) . Then x(t) can be written as

x(t) = [A - BG]x(t) - BGw(t) + Ld(t) (3.36)

The dynamics of the closed-loop system in matrix form is then given by

x(t) A - BG -BG x(t)
+ L d(t)

w(t) 0_ A - HC w(t) L -H r(t)

The eigenvalues of the closed loop matrices [A - BG] and [A - HC] con-

stitute the system poles. Therefore, the det (AI_ - A + BG) and

det (XI - A + HC ) provide the needed insight into the stability of the

closed-loop system. In order for the closed-loop system to be stable

ReX.[A - BG] < 0; i = 1, 2, . . . , n (3.37)

and

ReA.[A - HC] < 0; = n + 1, n + 2. 2n

If we are given matrices A, B and £ with [A, Bj stabilizable and [A, C_]

detectable, then matrices G and H exist that stabilize the open loop

system, i.e. [A - HC] and [A - BG] are stable. The methodology used to

calculate G_ and H is outlined in sections 3.5 and 3.6 [13, 14]. This

provides in fact the underlying mathematical basis of the LQG/LTR ob-

tained solutions.

61





G
o
•H
•u
n3

H
3
00
•H
4-1

c
o
O

ô
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3.5 The Filter Gain and Control Gain Matrices

It can be seen from Figure 14 that the filter and control gain

matrices are the heart of the MBC. In essence the Kalman filter gain

matrix, H, is the input matrix into the MBC taking the error input

through the MBC dynamics, which in turn passes it through the integrator

having first multiplied the outputs by the appropriate gain matrix G.

This then generates the appropriate control input for the plant.

The G and H matrices serve a very useful purpose. Recall from

Section 3.1 that the desired plant output is modeled via singular val-

ues. Setting the shape of the desired plant open loop singular values

is important for good command following, disturbance and noise rejec-

tion. Once the designer has achieved a shape that meets the open loop

specifications, it is important to realize them next in a closed loop

configuration. The feedback configuration has the advantages of reduced

sensitivity to external disturbances, as a result of a course change

—

for example, depth change, as well as meeting the specifications of good

command following and other noise and modeling uncertainty reduction.

Through the clever iterative selection of the H and G_ matrices via the

LQG/LTR procedure this can be attained. Section 3.6 will detail how

this selection is made.

3.6 Loop Shaping

This section will outline the procedure that was followed in

designing the LQG-based controller with Loop Transfer Recovery [14]. A

plot of the open loop singular values of C(SI - A) B is given in Fig-

ure 11. Since there are three controls and three outputs, there are

three lines of singular values. As one can see, there is significant

separation between the maximum and minimum singular values. It is de-

sirable that all three behave as close as possible in a tight controller

design.
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The first step is to shape the open loop plant singular values so

they meet the desired specifications of good command following, stabil-

ity and performance, as well as noise and disturbance rejection. This

is done by tying the maximum, middle, and minimum singular values to-

gether at high and low frequencies. To achieve this, one must form the

matrix

G
F0L

(s) = C(SI - A)
L
L (3.38)

where L is an arbitrary matrix that can be manipulated by the designer

to ultimately give the desired loop shaping. For system at hand, we

form,

(SI - A) =

(SI - A.) -B—

*

SI

where

A—

x

A B C
-p-a

(8 x 8) (8 x 3 )

(3 x 3)

1_

T

1_

T
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and

B*

(8 x 3)

1

T

1

T

1

T

Note, the A matrix of (SI_ - A) came from Section 3.3. The inverse of

(SI - A) is

(SI - A)
-1

(SI " A*)
.1 he

1" (SI - A*)

I

S

-1

The L_ matrix can be broken up into two components _L, and L~ where

h = L(
8 x 3 )

and k2
=

—a, -\\' ^or ^ow frec
l
uency shaping, SI_ is

approximately zero. With that approximation and forming G (s) , one
rUL

gets

C(SI - A)
l
L [^o x id £

—-k

-£**
r*

s h
I

s" .

h
(3.39)

where C is a (3 x H) matrix with identity in positions (1, 6), (2, 7),

and (3, 8) corresponding to the states to be controlled r, <j> , and 0.

Expanding (3.39) yields
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-1 -1 —llA* —VcL.9

C(SI - A) L = -C
11
A

;fe

i
L

1
- — - (3.40)

But for small s, low frequency, the second term in (3.40) dominates the

-1 "-11-* -*^2
first term. So (^(SI_ - A) L can be approximated by -

. Then

to tie the singular values together at low frequencies we also have
IW s) =
s-

Therefore

l
2

= -(ChA;
1

!^)
l

(3.41)

For high frequencies, one can approximate (SI_ - A) by SI_. Using

the same procedure as above,

C(SI - A)
l
L &11 0]

(SI)
-1

-(SI) V
I

"s

h
(3.42)

Expansion of (3.42) yields

C(SI - A) *L
^11-1 ^

-11-^2
(3.43)

As S gets large, high frequencies, the second term in (3.43) will be

dominated by the first term. So L, will be equal to

h - fe)-^ - &M0- 1
(3.44)
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The combination of L. and L__ now constitutes the L matrix of the

overall system. The L^ matrix provides loop shaping and is totally under

the designer's control as a free design parameter. Figure 15 shows the

result of the initial open loop shaping. This, in turn, provides the

desirable system profile which the closed loop compensated system should

match. The resulting L matrix can be found in Appendix G. In order for

the crossover frequency to be less than the critical crossover frequency

of 0.1 radians per second, (natural sea spectrum is at 0.14 radians per

second), it was necessary to multiply the L matrix by a scalar of 0.05.

FREQUENCY (RflO/SEC)

Figure 15. Singular values of G (jw)
FOL

The next step in the controller design is to determine the filter

gain matrix, H. To do this one solves the Filter Algebraic Riccati

Equation (FARE).
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= ZA + A
T

Z_ + S - - 2C
T
9_

L
CS_ (3.45)

where 9_ is an arbitrary (m x m) symmetric and positive definite matrix

(equal to the identity here) and H_, normally the process noise covari-
T

ance matrix is now replaced by LL . The solution to the FAKE is the

(n x n)E_ matrix. The filter gain matrix is given by,

1 T -1
I = T7 — i (3.46)

If one plots the singular values of the Kalman filter

a
i
(GKF

(jw)) = C(SI - A)
l
R (3.47)

then they should pattern the profile of the singular values of G (jw)

.

FOL
Figure 16 shows the similar profile. The DC gains, crossover frequency,

and band crossover bandwidth are approximately the same. If it becomes

necessary to adjust the DC gain and crossover, this can be accomplished

by selecting another free parameter y , in Eqs. (3.45) and (3.46).

The final step in the controller design is to solve the Control

Algebraic Riccati Equation (CARE) to obtain the control gain matrix, G.

The CARE looks like

= -KA - A
T
K - £Q + KBR B

T
K (3.48)

where K is an (n * n) solution. The R matrix is an (m x m) positive

definite matrix (identity for our purposes), and the Q matrix is given

by

Q = C
T
C (3.49)
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a

FREQUENCY (RflD/SEC)

Figure 16. Singular values of G^tjw)
-KF

such that [A, Cj is a detectable pair. The control gain matrix G is

given by

-1 T
G = R B K (3.50)

The singular values of the resultant loop transfer matrix

(c . [T_(J W ) ]) are now calculated where

T(s) = GCs^^Cs) (3.51a)

or

T(s) = Gp(s)K(s) (3.51b)
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G(s) is the plant transfer matrix defined by

G(s) = Gp(s)Ga(s) (3.52)

as illustrated in Figure' 7. In the frequency domain IC (s) is given

by:

^ (s) = GjSI_ - A + BG + HC)
_1
H (3.53)

Figure 17 is a plot of the singular values of the compensated system

T_(s) . A value of 1000 was used for q so that the three individual con-

trol singular values coincide. It is apparent by comparing a.(T(joj))

with a.(G. (jw)) that the DC gains are equal and crossover occurs at the
1 —Kr

same frequency. The roll-off past crossover is desired as illustrated

in Figure 9.

A check was made to determine if the controller, K(s) introduced

any instabilities into the system. Table 2 is a listing of poles and

zeroes which indeed corroborates the fact that the design has resulted

in a stable system. Appendix H contains the A, B_, C_, G_, H and

(A - BG - HC) design matrices that will also be used in the simulation

as described in Section 4.1.
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Table 2. Poles and zeroes of K(s)

.

Unique Poles

Number Real

1 -4.421317785E-02

2 -1.984642130E-01

3 -2.515003179E-01

5 -2. 28357244 7E-01

7 -3.121226887E-01

8 -8.357975180E-01

10 -8.470467465E-01

12 -4.856380807E-01

14 -1.202212619E+00

Imag

2.689624484E-01

7.200466481E-01

3.140172344E-01

1.221159615E+00

5.654424752E-01

Unique Zeroes

Number

1 -2.418544925E-02

2 -4.342940086E-02

3 -9.122782906E-02

4 -1.062659914E-01

6 -1.471524383E-01

7 -1.852788869E-01

8 -5.245929103E-01

9 -6.230977444E-01

11 -5.179401036E-01

-7.231643907E-02

4.323091793E-01
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CHAPTER 4

COMPENSATOR PERFORMANCE

4.

1

Model Simulation

The model simulation used to test the controller involves the

integration of

z(t) = (A - BG - HC)_z(t) - He(t)

where e_(t) is the error vector defined by

e(t) = r(t) - y_(t)

To close the loop, one can either select the linear model or nonlinear

model as developed in Chapter 2. It is expected that the linear model

will give good results with the nonlinear model giving acceptable re-

sults because the controller was designed from the linear model origin-

ally.

4.

2

Simulation Results

Now that the controller has been designed, it is necessary to

test its performance. Recall that the motivation behind this thesis was

twofold: (i) design a controller from a linear model and (ii) test it

on a nonlinear model, controlling r, <£ , and in a turn.
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The first test simulation run purpose was to check if the con-

troller would be able to achieve zero steady state error with a command

reference input of -0. 368482E-02 rad/s, the nominal r value, and zero

for both
<J)

and 9, keeping in mind that the open loop roll for the same
_2

condition was 1.5 degrees and 6 4.0 * 10 " degrees. With the closed

loop simulation, both § and 9 indeed went to zero.

A second simulation run was made to command a condition that was

other than the nominal r. A turning velocity equivalent to a 5 degree

nominal rudder deflection was commanded with zero again for <j> and 9.

The open loop <j> and 9 for this condition were 5.5 degrees and 2.5 de-

grees respectively with the controller, r went to the commanded value of

-0.1160E-02 rad/s, and <j> and 9 went to zero. With both simulation runs,

the controller achieved zero steady state error for the three command

inputs. Figure 18 contains the open loop r, $ and 9 response runs and

the closed loop simulation response with command input of -0. 368482E-02

rad/s, 0°, and 0° for r, <j) and 9 respectively. Figure 19 likewise shows

the open and closed loop responses for r = -0.1160E-01 rad/s and zero

for
<J>

and 9

.

One additional benefit of the controller can be seen with depth,

z. Without the controller, both open loop simulations exhibited contin-

uous depth change throughout the run. With the controller^, the vehicle

sank a small amount but steadied as the run continued. Therefore the

controller was able to stabilize depth loss even though depth was not a

control variable.
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OPEN LOOP RESPONSE

do

123 130 240 300

TIME
3S0- '423 1430

-t i
1-

-i 1
1 1 1 1 1 1 1

1
1 H

T) SO 120 180 240 300 360 '-420 130 510 S00
TIME

H 1 1 1-

—

H

1 1
1 I

1 1 1
1 1 1 1 1 1 1 1 1 1

60 120 180 240 300 360 420 180 540 600
TIME

H 1 1 1 h-

240 300

TIME
60 120 180 3S0 423 430 5,0 5C0

Figure 18. Open and closed loop simulation responses with
command input

.

r = -0.368482E-02 rad/s

<j> - 0°

9 = 0°
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CLOSED LOOP SIMULATION RESPONSE (2° RUDDER)

-I 1 ! 1 1 1 1 1 1
1-

I I 1 1 1 1 h-

I 1 1 1 1 1 h- —

I

1 i 1 1 1 1 I

3S0 420 1180 540 6002140 300

TIME

H 1
I

1
1 1- -I 1

1 H H 1 h

H 1 I H 1 1 1 1 H H 1 1 1 1-

120 180 240 300

TIME
360 120 480 510 600

H 1 1 H H 1 1 1 1 1 1 1 H

I I
1 1 (- -I 1 1 1-

210 300
TIME

360 120 180 510 600

-I 1 H

240 3U0
TIME

420 tSO 540 300

Figure 18. (Cont.)
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CLOSED LOOP SIMULATION RESPONSE (CONT'D)

o
H 1 I 1

1- H 1 1 1 1 1 H

H 1 1 1 1 I I 1 1 1
1-

120 180 240 300 360 420 480 540 600
TIME

-i
1 1 h

-I 1 I 1 1 1 1 1 1 1 1 1 1 1 1 1
(-

SO 120 240 300
TIME

360 420 ISO 540 600

240 300

TIME

Figure 18. (Cont.)
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OPEN LOOP RESPONSE

-i
1 1

1-

~~
cr '

Co \

-I 1 1 1 1 1 1 h- H 1 1 1 H —

I

1-

480120 180 240 300

TIME
360 420 510 BOO

H 1 1
1- H 1 1 1 1 1 1 1

(-

H 1 1 1 h
% 60 120 160 240 300 360 420 180 540 600

TIME

H 1 1 1 1 1 1 1 1 1 H H 1 H

H 1 h
60 120 180 ZH0 300 360 M20 480 540 600

TIME

H 1 1 1 1 1 1 1 1 1 1 1 H H 1 1 1 H

H 1
1 1 1 1 1 1

1-

60 120 ISO 240 300
TIME

350 120 480 540 600

Figure 19. Open and closed loop simulation responses with

command input

.

r = -0.1160E-01 rad/s

4) = 0°

e = o°
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CLOSED LOOP SIMULATION RESPONSE (5° RUDDER)

240 300

TIME
H80 540 BOD

H 1 1 1 1 1 1-

-) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1-

60 120 180 240 300 360 420 480 540 600
TIME

H 1 1 H H 1 1 1 1-

1 1 1 1 1 1 1 » 1 "*

180 240 300

TIME

—

I

1 1 1 1 i 1 1

360 420 480 S40 600

Figure 19. (Cont.)
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CLOSED LOOP SIMULATION RESPONSE (CONT'D)

5H0 600

H 1 1 1 1 H

H 1
1

1
1 1

u- H 1 1 1 1 1 1 1 1 1 1-

120 180 240 300 360 120

TIME
510 600

-I 1 1-

-I i
1 1 1 1 1 1- H 1 1 1 1 h-

120 180 2U0 300
TIME

350 U20 510 600

Figure 19. (Cont.)
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CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

The LQG/LTR method can be successfully used to design a control-

ler from a linear model. Additionally the resulting controller is able

to perform acceptably with zero steady state error on a nonlinear model,

which more closely approximates the real world system.

The MDS configuration has demonstrated improved ability over the

conventional cruciform stern in turning situations. With the ability of

the vehicle to align its local reference axis to that of the global

system, one is able to obtain true motions of surge, sway, heave, roll,

pitch, and yaw. The advantage being improved crew comfort and quicker

computer solutions to fire control problems.

It is recommended that further thesis work on this model to in-

clude depth control with the additional control surface of sailplanes.

A potpourri of operating points spanning a speed range from 5 to 21

knots with rudder deflections of 5 to 30 degrees will give on a feeling

for the capabilities of the MDS configured submersible. The addition of

vortex shedding to the model will also improve the characteristics of

the model to real world submersibles. Finally, it would be desirable to

design a controller that could negotiate ordered changes in depth. With

gain scheduling, the model could clearly be used as a training aid in a

simulation laboratory.
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APPENDIX A

MASS PROPERTIES

Mass Weight

75,483 slugs 2,428,300 lb

Ixx Iyy

L9,300 slugs- ft
2

123 ,790,000 slug

Ixy Ixz

0. 0.

XG YG

0. 0.

XB YB

0. 0.

Xstern Slength

-89.75 ft 180 ft

Buoyancy

2,428,300 lb
f

Izz

123,790,000 slugs-ft

Iyz

0.

ZG

1.0 ft

ZB

0.

2
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APPENDIX B

NONLINEAR EQUATIONS OF MOTION

Axial Force Equation

2 2
mu - my r + mz q = mvr - mwq + mx (q + r ) - my pq - mz„pr

+

+ f r3

% J^Tx* q
2
+ X' r

2
+ X' rpl

2 I qq
n rr rp ^J

|X- 'u + X' vr + X' wql
u vr wq n

J

+ £ £
2
[x' u

2
+ X' v

2
+ X' w

2
l

2 |_ uu w ww J

+ |£
2
u
2
[x'

s
(D 1

2
+ D2

2
+ D3

2
) + X'^6 2

]

+ j I u thrcst (a. + b.n + en j

+ % £
2
(n - 1)|~X' u

2
(Dl

2
+ D2

2
+ D3

2
) + X' v

2
+ X' w

2

]2 L <5 6n vvn wwri J

- (W - B) sin 9 - drag
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Lateral Force Equation

mu - mZpP + mxrr =

2 2
mwp - mur + my (r + p ) - mzn gr - mx^qp

+ §- £
4
|Y''p +Y-'r+Y'| iplpl + Y* pq+Y' qrl

2 |_ p ^ r p|pr
IKI pq^H qrH J

Y-'v + Y' vq + Y' wp + Y f wr + Y'ur + Y'up
_ v vq wp wr r p

r+ £- I
3

2

+ YJ
| x u|r] (Dl - 0.6088D2 + 0.6088D3)

r o ' '

J.

2

v| r I I vl ' rri
T^T (v

2
+ w

2
)

2
|r| + Yl„ur(n - 1)1

| ^
2
[y;u

2 + Y.'.uv + Y:u v(v
2
+ w

2
)

2

V V V

+ y' y^H + Ylu
2
(Dl 0.6088D2 - 0.6088D3)

vw
J2 , 2 2V U + V + w

']

1

+ £ l
2

(r] - 1)|Y' uv + Y» , I
v(v

2
+ w

2
)

2

2
v Ivn v v n

o a z

+ YI u
2
(D1 - 0.6088D2 + 0.6088D3)

5n J

+ (W - B) sin <j> cos 9

1

I
1

f p(
™

dx
/H(x)v(x){[w(x)]

2
+ [v(x)]

2

}

2
dx

2 / D(x) dx
2, I

X
fw

| £
2 — —

f
w(x)v

fw
(t - x(x)) dx

(x£ - X
fw SO X

vs
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Normal Force Equation

mw - mx_q + my p

2 2
muq - mvp + mz_(p + q ) - mx^rp - my^rq

+
2

x, Z-'q + Z'

|

q p Ip

2
P u

^nr 2 2
N/ U + V + W

+ Z'
ir r

2
r u

k
/~2 2 2\U + V + w

+ z . Epu.
rp

ri
-

2 2Vu + v + w

+ ^ 3
rz.'w + Z ' + v
W Vr

/ 2^ 2 7 2
'

N/U + V + W

vp + Z ' uq
vp q

H

+ Zf ..u q (-0.7934D2 - 0.7934D3)
q|6

+ Z',
|
t^t (v

2
+ w

2
)

2
|q| + Z' uq(n - 1)

w
| q |

| w

|

'
' qn

+
2

ll lu
2 + Z'uw + Z' | iw(v

2
+ w

2
) + Zi iu|w

* W WW w

+ Z'l
IV V

2
V u

K|2 L
2 ,

2
N/U + V + W

+ z;u
2
(-0.7934D2 - 0.7934D3)

o

+ Z' u
2
6, + Z' |w|n/v

2
+ w'

OD D WW 1

'

+ f*
2
(n- i)[z;

1_

2 2 N 2
uw + Z'i

i

w(v +w)
wn w w n

+ ZI u
2
(-0.7934D2 - 0.7934D3)| + (w B) cos II cos $

6n
>1
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- |J*C d
D(x)w(x)|[v(x)]

2
+ [w(x)]

2

}

2
d:

k

fw

+ |£C
v J

v(x)v
fw

(t Z ) dx
x

X
vs
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Rolling Moment Equation

my
G
w - mz

G
v =

-I p - (I - I )gr + (r + pq)I - (r
2

- q
2
)I - (pr - q)Ixxr zz yy xz v H yz p H xy

+ my uq - my vp - mz^wp + mz.ur

P „5
- l

J
K-'p + K- 'r + K* qr + K' pq + K f

,
iplpl

2 |_ p r qr M pq^1

P I P |
'

'

J

+ % I |K'up + K'ur + K- 'v + K 1 vq + K' wp + K' wr
2 _p

r
r v vq^ wp ^ wrj

+ Pjl 3
I

K!u + K'uv + K' I iv(v
2
+ w

2
)

2
+ K' vw + K'u

2
(Dl - D2 + D3)* V V V VW

+ K' u
2
(n - 1)X T1

/ 2 2 2\- Propt + (u + v + w I

(k4SS
2

sin 4(<}> - 37.5) + K8S sin 8(<t> - 37.5))
\ s s s /

+ [ (y~w - y_B) cos 9 cos
<f)

- (znw - z B) cos 9 sin tj>]

? - fw
+ 5- rc z r w(x)v r (t - x ) dx

2 v J fw x y

x
vs

P 3/ 2 2 2\

2 M U + v
t
+ wJ

|"k
4s

6
2

sin (4(<|>
s

- 37.5°)) + g
2
Kas 8s

v = v + x r
s s

w = w - x q
s s n
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d> = tan
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= tan
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2

J
u

92





Pitching Moment Equation

mz
G
u mxrw =

mz
G
vr - mz

G
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Yawing Moment Equation
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Auxiliary Equations
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APPENDIX C

LINEARIZED EQUATIONS OF MOTION
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Rolling Moment
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APPENDIX D

SUMMARY OF NON-DIMENSIONALIZING FACTORS AND
DIMENSIONALIZED HYDRODYNAMIC COEFFICIENTS

NOTATION [1]

Symbol Dimensionless Form Definition

I

I I' = r Moment of inertia of submarine about
x x 1 „5

x axis

I I
1 = -:

—

*—= Moment of inertia of submarine about
y y i

n 5 y axis

I I' = -; = Moment of inertia of submarine about
z z 1 „5

z axis

I i' = J— Product of inertia about xy axis
xy

I i' —i-=— Product of inertia about yz axes
yZ yZ

\ Pi
5

X {pi 5

I'
y

I
y

i'
z

i
z

ip*5

I'
xy

I
xy

ip* 5

I'

I
yz

I I'

I
zx

zx zx
i,t

K* K '

K*

1 3 2

Product of inertia about zx axes

Rolling moment when body angle (a, 8) and

control surface angles are zero
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NOTATION (Cont.)

Symbol Dimensionless Form

K*
=

1 3 2
2 pru

K
K
p

K'
P

P

| p£
4
u

K«

K-
p

K-'
P

P

i^
5

pipI
K

'lPIP
= pIpi.

2 P £

K K'

K
pq

Pq Pq „ 5

Definition

Coefficient used in representing K^ as a
function of (n-1)

First order coefficient used in represent-
ing K as a function of p

Coefficient used in representing K as a
function of p

Second order coefficient used in repre-
senting K as a function of p

Coefficient used in representing K as a

j pi function of the product pq

K
K K' = -——

—

Coefficient used in representing K as a
-~ pi function of the product qr

K K = : ;— First order coeffxcxent used in represent-
ing K as a functxon of r

K* K* ' = : - Coefficient used in representing K as a
r r 1 5 •

function of f

K K = -; r— First order coefficient used in represent-
v v 1 „ 3„ . c ^- cing K as a function of v
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K
r

\ pil
4
U

K". '

K«
r

r \^

v'
K
V

Js.

V
\ p*

3
u





NOTATION (Cont.)

Symbol Dimensionless Form Definition

Coefficient used in representing K as a
function of v

Second order coefficient used in repre-
senting K as a function of v

Coefficient used in representing K as a

V
K-'
V

= V

| Pl
4

K
1 1

v| v|
K

'lv| V

K
1 1v|v|

±p* 3

V K"
K
vq

vq vq 4t p£ function of the product vq

Coefficient used in representing K as a

function of the product vw

Coefficient used in representing K as a

function of the product wp

Coefficient used in representing K as a

function of the product wr

First order coefficient used in represent-

ing K as a function of 6

V = 1 Overall length of submarine

Mass of submarine, including water in

free-flooding spaces

Pitching moment when body angles (a, g)

and control surface angles are zero

K
vw

K'
vw

K
vw

2 P £

K
wp

K'
wp

K
wp

|p*
4

K
wr

K'
wr

K
wr

ip*4

K
6 n

K
«r

i piV

m m'
i P *

3

M
*

=
m*

M* 1 3 2

118





NOTATION (Cont.)

Symbol Dimensionless Form Definition

M
|

I

M M ' p | p I

p|p| pIpI
~ 15 Second order coefficient used in repre-

2 ^ senting M as a function of p. First order
coefficient is zero.

M
M
q

M ' =
1
— ^~ First order coefficient used in represent-

Y PA U ing M as a function of q

M-

M* M- ' =
;

3
1 1 1 «

5
Coefficient used in representing M as a

"2 p£ function of q

M I

,

M I

1

M«, ,- - -^4
q I q I q I q I - „ 5

Second order coefficient used in repre-
j pil senting M as a function of q

Mi 1

1 q
Mi 1. Mi I = , , Coefficient used in representing M. as a
11

'
q '

j pi U function q

M
M M' = *-= Coefficient used in representing M as a
rp rp 1 j

-T pl function of the product rp

M
1

1r MrM11 M'
1 1

= :—'

—

y Second order coefficient used in repre-
r r r r 1 511 - pH senting M as a function of r. First order

2
coefficient is zero

M
M M' = -; r Coefficient used in representing M as a
vr vr 4— pi function of the product vr

M,
jM11 M *

1
1

= :—'—i- Second order coefficient used in repre-vv v v l n 3 .w c c11
' ' — pi senting M as a function of v
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NOTATION (Cont.)

Symbol Dimensionless Form Definition

M
w

M' =
w

M
w

j p£
3
U

M M' =
wri

M
wn

ipA

M«
w

M- ' =
w

M»
w

\^

Mi
|

|w|
Mf |

=

|w|

.

M
l»!

\,ik

Mi ,

|w|q Mf
||w|q

M, ,

|w|q

|p*
4

M ,

|w| w|
M'i

|w| w|

M
| |

w| w|

|p*
3

w| w| n
M'i

,w| w| n

M I

iw| w| n

M M» -
M
6b

M
5b

\ p*V

M
5

«'
e

-

M
6

| p*V

First order coefficient used in represent-
ing M as a function of w

First order coefficient used in represent-
ing M as a function of (n - 1)

Coefficient used in representing M as a
function of w

First order coefficient used in represent-
ing M as a function of w; equal to zero
for symmetrical function

Coefficient used in representing M as a

function of w

Second order coefficient used in repre-
senting M as a function of w

First order coefficient used in represent-

ing Mi I as a function of (n - 1)
° WW

First order coefficient used in represent-

ing M as a function of 6

First order coefficient used in represent-

ing M as a function of 6
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NOTATION (Cont.)

Symbol Dimensionless Form

<5n <5n

= Sri

1 3 2
\ pjrir

* i =
k

1 3 2

y pjrir

N
N
P

N'
P

p

j p£
4
u

N-
N-
P

N- 1

P

P

N
pq

N'
pq

=
N
pq

N
qr

N*
qr

-
N
qr

2 P*

N
r

N'
r

=
N
r

\ p^
4
u

N
rn

N'
rn

=
N
rn

\ pii
4
u

N«
r

N« '

r
=

N-
r

\^

Definition

First order coefficient used in represent-
ing M

g
as a function of (n - 1)

Yawing moment when body angles (a, 6) and
control surface angles are zero

First order coefficient used in represent-
ing N as a function of p

Coefficient used in representing N as a

function of p

Coefficient used in representing N as a

function of the product pq

Coefficient used in representing N as a

of the product qr

First order coefficient used in represent-

ing N as a function of r

First order coefficient used in represent-

ing N as a function of (n - 1)

Coefficient used in representing N as a

function of r
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NOTATION (Cont.)

Symbol Dimensionless Form

N
N
r r

N',
r r

r
l

r
|

Definition

Second order coefficient used in repre-
senting N as a function of r

N,

N,'
r 6r

r|*r -|r|«r 1 ^ Coefficient used in representing N. as a
function of r

N

N' = Y-V First order coefficient used in represent-
ing N as a function of v

N

vn

vq

vn
vn

\ p£
3
U

N-'
V

= V

ip,4

N'
vq

=
N

First order coefficient used in represent-
ing N as a function of (n - 1)

Coefficient used in representing N as a

function of v

Coefficient used in representing N as a

function of the product vq

v r

N

Nf
v r

v r \^
Coefficient used in representing N as a

function of v

N
v v

N'.
v v

N
,

|V| V|

ipt 3
Second order coefficient used in repre-

senting N as a function of v

N

v v n
N'|

iv v n

y| v[_n

|p*
3

First order coefficient used in represent-

ing N
i

I as a function of (n - 1)
° v v
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NOTATION (Cant.)

Symbol Dimensionless Form

N
vw

N'
vw

=
N
vw

ip* 3

N
wp wp

=
N
wp

N
wr wr

=
N
wr

|p*
4

6r <5r
=

N
Sr

1 3 2

y paV

M
orr

6rn
orn 1 3 2

Y paV

P P' = PA
U

•

P
•

P' = h2

u
2

q q' = 2i
u

•

q

•

q' =_ q*
2

o
2

r r» =
U

Definition

Coefficient used in representing N as a
function of the product vw

Coefficient used in representing N as a
function of the product wp

Coefficient used in representing N as a
function of the product wr

First order coefficient used in represent-
ing N as a function of 6

First order coefficient used in represent-
ing N« as a function of (n - 1)

Angular velocity component about x axis

relative to fluid (roll)

Angular acceleration component about x

axis relative to fluid

Angular velocity component about y axis

relative to fluid (pitch)

Angular acceleration component about

y axis relative to fluid

Angular velocity component about z axis

relative to fluid (yaw)
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NOTATION (Cont.)

Symbol Dimensionless Form

•2
r r

U

Definition

Angular acceleration component about
z axis relative to fluid

U

u

U' — u

u

u' = u

D

• u£

Linear velocity of origin of body axes
relative to fluid

Component of U in direction of the x axis

Time rate of change of u in direction of

the x axis

u Command speed: steady value of ahead
speed component u for a given propeller
rpm when body angles (a, (3) and control
surface angles are zero. Sign changes
with propeller reversal.

v' = -
U

Component of U in direction of the y axis

u
2

Time rate of change of v in direction of

the y axis

w

w

w"

w'

w
U

w&

u
2

Component of U in direction of the z axis

Time rate of change of w in direction of

the z' axis

» ± Longitudinal body axis ; also the coordi-

nate of a point relative to the origin of

body axes

*B

*B
The x coordinate of CB
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NOTATION (Cont.)

Symbol Dimensionless Form Definition

X
G

x
G

X
G

=
T" Tlle x coordinate of CG

» _P_X
Q

X
o

~ T~ A coordinate of the displacement of CG
relative to the origin of a set of fixed
axes

X X' = . , Second order coefficient used in repre-
senting X as a function of q. First order
coefficient is zero

X X' = -

—

*~- Coefficient used in representing X as a

function of the product rp

X X = -: Second order coefficient used in repre-
rr rr 1-4 . _ . ., „ ,

c
,

senting X as a function of r. First order
coefficient is zero.

X* X* ' = -: Coefficient used in representing X as a
u

X'
qq

X
qq

X'
rp

X
rP

X'
rr

X
rr

±91*

X-'
u

X-
u

jp*
3

X'
uu

X
uu

2 P^

X
vr

X'
vr

=
X
vr

ip* 3

Xw X'
vv

=
Xw

1 „2

function of u

X X = -. r- Second order coefficient used in repre-
senting X as a function of u in the non-

propelled case. First order coefficient
is zero

.

Coefficient used in representing X as a

function of the product vr

Second order coefficient used in repre-

-^ pi^ senting X as a function of v. First order

coefficient is zero.
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NOTATION (Ccmt.)

Symbol Dimensionless Form Definition

X
vvri

X'

Xwn
1 n 2

2 P^

X
wq

X'
wq

X
wq

2 P^

X
WW

X'
WW

X
WW

1 „2

First order coefficient used In represent-
ing X as a function of (n - 1)

Coefficient used in representing X as a
function of the product wq

Second order coefficient used in repre-
j pH~ senting X as a function of w. First order

coefficient is zero

X
WWT|

X X = : r- First order coefficient used in represent

-

wwn wwn 1„2 . _ . . .. _ .

r

t p£ mg X as a function of (n - 1)
2 ° ww

V

X r , ., X' r , = - t—r- Second order coefficient used in repre-

7 pi U senting X as a function of 6, . First
2 , _x . . . b

order coefficient is zero.

X P , X' - =—tt Second order coefficient used in repre-
6r5r 6r5r 1 „2 TT2 _ - c » _. .

-r pi U senting X as a function of 6 . First

order coefficient is zero

.

X. , X' = -;

—

r
- ^ First order coefficient used in represent-

5r6rn 6r6rn 1 2 2
as fl function of (t)

_ 1}
2 6r6r

X. X' = -j

S S

?
Second order coefficient used in repre-

5s S
j pi U senting X as a function of 5

g
. First

order coefficient is zero.

X X'
6s6sn

First order coefficient used in represent

-

5s6sn 5s6sn 1 ^2 2
as a function of (n _ i)

2 5s6s
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NOTATION (Cont.)

Symbol Dimensionless Form Definition

.« = Z

yB ?B
=

JG ?G
=

2,

yo K =
y
o

I

Lateral body axis; also the coordinate of
a point relative to the origin of body
axes

The y coordinate of CB

The y coordinate of CG

A coordinate of the displacement of CG
relative to the origin of a set of fixed
axes

Lateral force when body angles (a, $) and
control surface angles are zero

First order coefficient used in represent-
ing Y as a function of p

Y«

Y* Y*' = -,—*—r Coefficient used in representing Y as a
P P 1 „4 r . c •r pi function of p

Y
| |

Y I I Y'i I
= P ' P

|
Second order coefficient used in repre-

p
'
p

'

PIP I _ p£ senting Y as a function of p

Y
Y Y' = -

—

"t- Coefficient used in representing Y as a
P ^ P<* — p£ function of the product pq

n = Y
* 1 2 2

1 p£ U

Y'
P

=
Y
P

p
j p£

3
U
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NOTATION (Cont.)

Symbol Dimensionless Form Definition

Y
Y Y' = —-*—7- Coefficient used in representing Y as a

j pi function of the product qr

Y
Y Y' = -t — First order coefficient used in represent-

y pi U ing Y as a function of r

Y
Y Y' = -: r— First order coefficient used in represent-
rr

i
rri 1 jTT , ,

y p£ U ing Y as a function of (n - 1)

Y'

Y* Y«' = 7- Coefficient used in representing Y as a

t p£ function of f

Y
1 r|6r

2

I- Yi 1. = -r-J—"-r— Coefficient used in representing Y. as a
11 — pi U function of r

First order coefficient used in represent-

ing Y as a function of v
Y
V

Y'
V

Y
V

1 „2TT

2
P^ U

Y
vn

Y'

Y
vn

1
„
2
TT

2 P £ u

Y«
V

Y-'
V

Y«
V

ip» 3

Y
vq

Y'
vq

Y
vq

ipt 3

First order coefficient used in represent-

ing Y as a function of (n - 1)
v

Coefficient used in representing Y as a

function of v

Coefficient used in representing Y as a

function of the product vq
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NOTATION (Cont.)

Symbol Dimens.Lonless Form

Y
v|r|

Y
'lv|r

Y
i iv| r

|

}p«
3

Y
v|v|

y
;i v

Y
i iv|v|

|pi 3

Y
1 1v| V n

Y'i
V

|
V n

Y
1 1v|v|n

|p.
2

Y
vw

Y'
vw

=
Y
vw

fp*
2

Y
wp

Y»
wp

=
Y
wp

ipt 3

Y
wr

Y'
wr

=
Y
wr

ip*3

V V
Y
«r

Definition

Coefficient used in representing Y as a
function of r

v

Second order coefficient used in repre-
senting Y as a function of v

First order coefficient used in represent-
ing Y 1 1 as a function of (n - 1)

Coefficient used in representing Y as a
function of the product vw

Coefficient used in representing Y as a

function of the product wp

Coefficient used in representing Y as a
function of the product wr

First order coefficient used in represent-
or 5r ! n

2TT2 • C fc • C £yp£ U ing Y as a function of 6r

Y
6r

Y. Yl = -j ;r-r First order coefficient used in presenting
0rT1 6rn i pJlV Y x as a function of (n - 1)

I or

z z' = — Normal body axis; also the coordinate of a
%

point relative to the origin of body axes
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NOTATION (Cont.)

Symbol Dimensionless Form Definition

The z coordinate of CBZ
B *B

=
Z
B

Z
G

2
i

=
Z
G
I

z
o

z'
o

=
z
o

X,

The z coordinate of CG

A coordinate of the displacement of CG
relative to the origin of a set of fixed
axes

i _Z^ Z^ = -j j-T Normal force when body angles (a, 3) and

y pi U control surface angles are zero

Z
| |

Z I I Z'i I =
i "I Second order coefficient used in repre-

p p p p 1 4
j pi senting Z as a function of p. First order

coefficient is zero

Z

Z Z' = - ^r— First order coefficient used in represent-
or pi U ing Z as a function of q

Z-
q

Z- Z* = -j

—

*-r Coefficient used in representing Z as a
q tpH function of q

z,

Zi i. Zi i. = .

' " '

- Coefficient used in representing Z as a
11 Ini yp£ U function of q

Z

Z Z' = -j ^r- Coefficient used in representing Z as a
P P -pH function of the product rp
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NOTATION (Cont.)

Symbol Dimensionless Form Definition

Z
r r

Z
r|r|

Z
r|r|

=
I— 4" Second order coefficient used in repre-
~2 Pi senting Z as a function of r. First order

coefficient is zero

Z

Z Z' = - First order coefficient used in represent

-

w w 1 2
9 P J2- U ing Z as a function of w
2

Z

Z Z' = -r-^- First order coefficient used in represent-
-r p£ U ing Z as a function of (n - 1)

Z
WTl

Z Z = -r — First order coefficient used in represent-
-t pi 1J ing Z as a function of (n - 1)
z w

Z*
w

Z* Z* = — Coefficient used in representing Z as a

t pJi. function of w

z
l I

Zi I Zi I
= -—'—_— First order coefficient used in represent-

-r- pi U ing Z as a function of w; equal to zero
2

for symmetrical function

Z
wl

I

Z
1

1
Z'i 1

= -:—L-l-L- Coefficient used in representing Z as a
'^' |n| = p 5, function of q

Z I I

Z
1 1

Z'i 1 = -,
—'—Jr Second order coefficient used in repre-

w w ww 2.—pi senting Z as a function of w

Z I I

Z
1 1 Z'

1
1

=
,

w
I

Wv First order coefficient used in represent-
w w n w w n 1 „2 . -7 £ t . c / n11

~z pi ing Z
1 1 as a function of (n - 1;

2
& ww
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NOTATION (Cont.)

Definition

Second order coefficient used in repre-
senting Z as a function of w; equal to

zero for symmetrical function

First order coefficient used in represent-
ing Z as a function of 6

First order coefficient used in represent-

ing Z as a function of 6

First order coefficient used in represent-
ing Z r as a function of (n - 1)

OS

Deflection of bowplane or sailplane

Deflection of rudder

Deflection of sternplane

u

n The ratio — = u
U c

8 Angle of pitch

i|> Angle of yaw

<j> Angle of roll

a., b., c. Sets of constants used in the representa-

Symbol Dimensionless Form

Z
WW

Z'
WW

=
Z
WW

1 „2
2 P^

Z
5b

Z'
^6b

=
z
«b

\ pA2

z xOS
Z
\OS

= hs
1 o 2 TT2

Z x6sn
z
\osn

=
Z
*osri

1 „2 TT2

2 PA U

6
b

6
r

6
s

111
tion of propeller thrust in the axial

equation
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Axial Coefficients

XQQ
-138568.

XRR
-11547.

XRP
54588.

XUDOT
-1819.584

XVR
63161.

XWQ
-58728.

XUU XW
154.872

XWW
120.204

XDD
-188.02

XWN XWWN

XDDN XDBDB
-91.044

Lateral Coefficients

YRDOT
-39890.

YPDOT
-72433.

YPABP YQR

YVDOT
-79122.

YVQ YWP
58728.

YWR

YR
41705.

YP
-4549.

YABRD YVABR

YSTAR YV
-1043.

YVABV
-2054.2

YVW

YD
185.036

YRN YVN YVABVN

YDN
43.371

YPQ
138568.
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Normal Coefficients

ZQDOT
-170000.

ZPABP ZRABR ZRP

ZWDOT
-69459.

ZVR ZVP
-33067.

ZQ
-42148.

ZABQDD ZWABQ ZSTAR ZW
-1044.3

ZWABW ZABW
-8.97

ZVABV ZD

248.054

ZQN ZWN ZWABWN ZDN
31.34

ZDB
-175.90

ZABQD zww
15.99

Rolling Coefficients

KPDOT
1133000.

KRDOT
-906993.

KQR
-2796560.

KPQ

KPABP KP
-153265.

KR
-398900.

KVDOT
-15746

KVQ KWP
53283.

KWR KSTAR

KV
-3423.

KVABV KVW KD
1568.

KSTARN K4S
1281.4

K8S

134





Pitching Coefficients

MQDOT
124300000.

MPABP MRABR MRP
29666000

MQABQ MWDOT
-170600.

MVR MWW
-1595.6

MQ
-4066000.

MABQDD MABQD MABWQ

MSTAR MW
221.62

MWABW
-35873.

MABW
-239.72

MVABV MDD MD
-23438.

MQN

MWN MWABWN MDDN • MDN
-3058.

MDB
4222.

Yawing Coefficients

NRDOT
128800000.

NRABR

NVQ

NABRD

NVABV
49980.

NPDOT
-434600.

NVDOT
-39800.

NP
-62986.

NABVR

NVW

NPQ
-97313000,

NWR

NR
-3766000.

NSTAR

NDD

NQR

NWP
-138558,

NABRDD

NV
-12661.

ND
-9798.

NRN NVN NVABVN NDDN

NDN
-4374

CDCRSS
.56889

135





APPENDIX E

DESCRIPTION OF PROPULSION MODELS AND NOMINAL POINT DETERMINATION

There are two propulsion models an RPS and an eta propulsion

model. The RPS model is a first order differential equation in terms of

RPS (revolutions per second) and is considered the more accurate model

of the two. The eta propulsion model is a simplified version of the RPS

model in that it is a first order differential representation where eta

u

(n) is defined as — . U is the actual speed of the submersible and u

is the commanded forward velocity. The eta model is important because

it was the model that was linearized and included in the linear equa-

tions of motion.

In order to find a nominal point, the final values of the states

(u, v, w, p, q, r, phi and theta) from the RPS integration are used as

an initial point with the eta model integration. The nonlinear equa-

tions are again integrated, however, using the eta propulsion model. A

search routine is used to search for a nominal point (a local equilib-

rium point where the derivatives of the state variables are zero). To

get some idea how good the nominal point is, the accelerations asso-

ciated with each of the states -are calculated. As a rule of thumb,

accelerations should be less than 10 . The equilibrium point for this

model is listed below.
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XDOT (1) = -0.134572E-10

XDOT (2) = -0.132110E-07

XDOT (3) = -0.1 3085 9E-08

XDOT (4) = -0.297533E-08

XDOT (5) = 0.137816E-10

XDOT (6) = 0.999896E-10

XDOT (7) = -0.568434E-13

XDOT (8) = 0.145519E-10

u = 0.351355E+02

V = 0.317284E+00

w = -0.678508E-02

p = 0.368353E-06

q = -0.996159E-04

r = -0.368482E-02

phi = 0.154856E+O1

theta = 0.572548E-02

psi = -0.211141E4O2

z = -0.170338E+00

DB =

Dl = 2.0

D2 = 0.5

D3 = -0.4744
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APPENDIX F

MODAL ANALYSIS MATRICES

0BSERVAB1LITY(T*C)

-2.1290E-05 7.1583E-05 4.8423E-03 5.2630E-0S 3.2220E-03 3.2220E-03 1.3762E-03 -2.7719E-02

O.OOOOE+00 O.OOOOE+00 O.OOOOE+00 0.0000E+00 6.9118E-03 -6.9UBE-03 O.OOOOE+00 0.0000E+00

2.MB9E-03 -2.0743E-03 -1.9729E-02 2.4111E-03 -5.6558E-01 -5.6558E-01 -6.4347E-03 2.6790E-01

O.OOOOE+00 O.OOOOE+00 O.OOOOE+00 O.OOOOE+00 7.0273E-02 -7.027SE-02 O.OOOOE+00 O.OOOOE+00

-7.B555E-01 1.6809E-03 1.3494E-02 3.3454E-02 1.4757E-03 1.4757E-03 6.7821E-02 4.3741E-03

O.OOOOE+00 O.OOOOE+00 O.OOOOE+00 O.OOOOE+00 3.1573E-04 -3.1573E-04 O.OOOOE+00 O.OOOOE+00

CONTROLLABILITY (T'^B)

-1.5311E-02 2.3498E-01 2.1431E-01

-8.0762E-U 7.1922E-11 -7.5965E-11

4.2370E-01 -6.0879E-02 7.5270E-02

1.1A03E-10 -9.0817E-11 1.1762E-10

-3.2662E+00 2.0472E+00

-3.6227E-09 2.974AE-09

-1.7453E+00

-3.3771E-09

1.W39E+00 -7.2340E-02 1.1274E+00

1.1672E-10 1.1699E-10 -7.2679E-U

3.0824E-OI -1.0009E-01 3.1397E-02

9.6169E-01 -B.67B4E-01 8.3702E-01

3.0824E-01 -1.0009E-01 3.1597E-02

-9.M69E-01 B.67B4E-01 -B.3702E-01

-1.6724E-01 2.3913E+00 2.2465E+00

1.7908E-10 -1.7178E-10 1.6932E-10

1.3332E+00 -6.7186E-01

-4.403AE-09 3.4B53E-09

4.8629E-01

-3.2005E-09
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DIAGONAL A MATRIX (f'tAtT)

-2.0293E-02 -4.81B2E-11 7.3209E-10 -4.3965E-10 -2.1759E-10 -2.9193E-10 -7.0223E-09 -4.9337E-09

8.0822E-15 3.1627E-15 9.9136E-13 2.5088E-14 3.U49E-09 -3.1450E-09 9.1370E-13 -4.9420E-12

-9.8699E-09 -4.3774E-02 -3.8043E-09 9.B277E-10 -6.5464E-08 -6.5325E-08 -3.1495E-09 1.1828E-07

-3.7401E-14 -1.4489E-14 -2.0391E-12 -5.7494E-14 6.3310E-09 -A.3132E-09 -4.2576E-12 1.2084E-11

-1.4485E-09 1.436AE-10 -1.8040E-01 S.4190E-10 1.3579E-08 1.0251E-08 -6.I731E-09 -I.8538E-09

5.6934E-13 2.21A6E-13 4.8451E-U 1.5575E-12 -5.4467E-09 4.3286E-09 7.3613E-U -1.2185E-10

-3.2042E-09 -3.5774E-10 4.4974E-09 -1.8432E-01 1.4152E-08 1.4424E-08 1.0545E-08 -3.3337E-08

-3.9672E-14 -6.8722E-14 2.9312E-13 9.8037E-14 7.0181E-08 -7.0659E-08 -1.3197E-U -3.9280E-U

-1.3921E-09 -3.2740E-10 -1.0737E-09 1.A470E-I1 -5.0851E-01 3.4939E-09 8.8439E-10 -1.1038E-09

-7.2923E-10 -3.5568E-10 1.7830E-10 1.6958E-10 3.2247E-01 -1.7384E-08 1.8838E-09 1.0024E-08

-1.3999E-09 -3.3429E-10 -1.0920E-09 3.6241E-11 -B.2512E-09 -5.0851E-01 5.8B81E-I0 3.0062E-09

7.7433E-10 3.426AE-10 -I.9646E-10 -1.4578E-10 2.4680E-08 -5.2247E-01 -1.9305E-09 -6.7210E-09

-1.3967E-09 -4.2439E-10 1.4B27E-09 -2.5007E-10 -1.1268E-0B -1.1079E-08 -6.2278E-01 2.4002E-OB

4.4808E-14 -1.5415E-14 -2.1257E-12 4.2141E-15 -1.8744E-09 1.9342E-09 -6.4594E-13 2.1903E-U

-B.4933E-09 2.2854E-10 -B.5856E-09 9.8674E-10 -B.2B33E-09 -1.3066E-08 4.4007E-09 -6.5837E-01

-3.8694E-13 3.7923E-13 2.6495E-U -1.1123E-12 -6.8672E-10 1.1121E-09 1.1026E-11 -2.8917E-10

EI6ENVALUES

-2.0293E-02 -4.3774E-02 -1.8040E-01 -1.B432E-01 -5.0851E-01 -5.0B51E-01 -6.2278E-01 -6.5B37E-01

0.0000E+00 0.00O0E+O0 O.OOOOE+00 0.0O00E+O0 5.2247E-01 -5.2247E-01 0.000OE+O0 O.OOOOE+00
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EIGENVECTOR (T)

2.1339E-02 -9.9996E-01 -5.3213E-02 9.0521E-03 2.8894E-03 2.8894E-03 4.3930E-02 2.2700E-02

O.OOOOE+00 O.OOOOE+00 O.OOOOE+00 O.OOOOE+00 -1.3787E-03 1.5787E-03 O.OOOOE+00 O.OOOOE+00

I.M40E-02 -8.5246E-03 -9.3374E-01 -6.6859E-03 6.A396E-01 6.A396E-01 3.9225E-02 -9.4647E-01

O.OOOOE+00 O.OOOOE+00 O.OOOOE+00 O.OOOOE+00 1.8740E-01 -1.8760E-01 O.OOOOE+00 O.OOOOE+00

6.1799E-01 -2.7814E-03 -3.5312E-01 -9.9935E-01 I.A231E-01 1.6231E-01 9.9503E-01 4.2B17E-04

O.OOOOE+00 O.OOOOE+00 O.OOOOE+00 O.OOOOE+00 7.3758E-03 -7.S758E-03 O.OOOOE+00 O.OOOOE+00

-2.9495E-03 9.6991E-05 3.A084E-03 -3.2107E-04 2.3089E-01 2.5089E-01 4.2573E-03 -1.7636E-01

O.OOOOE+00 O.OOOOE+00 O.OOOOE+00 O.OOOOE+00 -3.3123E-01 3.3123E-01 O.OOOOE+00 O.OOOOE+00

1.5937E-02 -6.4024E-05 -2.2315E-03 -6. 1764E-03 1.2570E-03 1.2570E-03 -4.2192E-02 -4.6181E-03

O.OOOOE+OO 0.0000E+00 O.OOOOE+OO O.OOOOE+00 5.3841E-04 -5.3841E-04 O.OOOOE+00 O.OOOOE+00

-2.1290E-05 7.15B3E-05 4.8423E-03 5.2630E-05 3.2220E-O3 3.2220E-03 1.3762E-03 -2.7719E-02

O.OOOOE+00 O.OOOOE+OO O.OOOOE+OO O.OOOOE+OO 6.9118E-03 -6.911BE-03 O.OOOOE+OO O.OOOOE+OO

2.6489E-03 -2.0743E-03 -1.9729E-02 2.41UE-03 -5.6558E-01 -5.6558E-01 -6.4347E-03 2.6790E-01

O.OOOOE+OO O.OOOOE+OO O.OOOOE+OO O.OOOOE+OO 7.0275E-O2 -7.0275E-02 O.OOOOE+OO O.OOOOE+OO

-7.8555E-01 I.A809E-03 1.3494E-02 3.3454E-02 1.4757E-03 1.4737E-03 6.7821E-02 4.3741E-03

O.OOOOE+OO O.OOOOE+OO O.OOOOE+OO O.OOOOE+OO 3.1573E-04 -3.1573E-04 O.OOOOE+OO O.OOOOE+OO
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APPENDIX G

L MATRIX

MATRIX ( 14, 3)
1 2 3

1) 0.0 0.0 0.0
2) 0.0 0.0 0.0
3) 0.0 0.0 0.0
4) 0.0 0.0 0.0
5) 0.0 0.0 0.0
6) 1 000000000000E+00 0.0 0.0
7) 0.0 1 0O000OOOO0OOE+OO 0.0
8) 0.0 0.0 1 000000000000E+00
9) 0.0 0.0 0.0

10) 0.0 0.0 0.0

11) 0.0 0.0 0.0

12) -1 .835420480000E+01 -1 403831751000E+00 -2 723467750000E-02
13) -1 .192239258000E+01 -1 310703360000E+00 -7 691884516000E-02

14) 1 .174827457000E+01 1 .333686037000E+00 -4 335761088000E-02
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APPENDIX H

A, B, C, G, H, (A-BG-HC) Matrices
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